
Dandelion Hashtable: Beyond Billion Requests per Second on a Commodity Server

Antonios Katsarakis∗, Vasilis Gavrielatos∗, Nikos Ntarmos
Huawei Research, *equal contribution

ABSTRACT
This paper presents DLHT, a concurrent in-memory hashtable. De-
spite efforts to optimize hashtables, that go as far as sacrificing
core functionality, state-of-the-art designs still incur multiple mem-
ory accesses per request and block request processing in three
cases. First, most hashtables block while waiting for data to be
retrieved from memory. Second, open-addressing designs, which
represent the current state-of-the-art, either cannot free index slots
on deletes or must block all requests to do so. Third, index resizes
block every request until all objects are copied to the new index. De-
fying folklore wisdom, DLHT forgoes open-addressing and adopts
a fully-featured and memory-aware closed-addressing design based
on bounded cache-line-chaining. This design 1 offers lock-free
operations and deletes that free slots instantly, 2 completes most
requests with a single memory access, 3 utilizes software prefetch-
ing to hide memory latencies, and 4 employs a novel non-blocking
and parallel resizing. In a commodity server and a memory-resident
workload, DLHT surpasses 1.6B requests per second and provides
3.5× (12×) the throughput of the state-of-the-art closed-addressing
(open-addressing) resizable hashtable on Gets (Deletes).

1 INTRODUCTION
Concurrent in-memory hashtables are essential and versatile data
structures in the modern cloud. They are responsible for storing and
accessing large amounts of data inmainmemory via thread-safeGet,
Put, Insert, and Delete requests. To ensure requests complete rapidly
as the dataset expands, hashtables must be also able to efficiently
Resize their index. In-memory hashtables serve a wide spectrum of
applications, including in-memory storage, online services, caching,
key-value stores, and transactional databases [1, 3, 4, 7, 10].

To meet the ever-growing performance demands [1, 5], state-of-
the-art hashtables from industry and academia offer designs that
attain close to a billion requests per second on a single server [2, 8, 9,
11, 12, 14, 15]. Problematically, their evaluation hints that such high
throughput is reachable only under cache-resident workloads where
accesses are served by hardware caches and seldom reach main
memory – i.e., due to small datasets [2], data partitioning [11, 14, 15],
or highly skewed accesses [8, 9, 12]. So we pose the following
question: Can state-of-the-art in-memory hashtables attain a billion
requests per second under a memory-resident workload?

To answer this question, we evaluate eight state-of-the-art de-
signs over a memory-resident workload of 100 million objects ac-
cessed uniformly on a commodity server. As shown in Figure 1,
almost all hashtables are more than 2× slower than a billion re-
quests per second. The most recent work, DRAMHiT [13], is the
only one close to the target (in Gets), but its open-addressing design
hinders Deletes and Resizes. Hence, achieving a billion requests
per second without forfeiting core functionality on a commodity
server remains a challenge for memory-resident workloads.

In a deeper inspection (detailed in our poster), state-of-the-art
designs offer lock-free accesses but sacrifice core functionality, in-

Figure 1: Throughput of state-of-the-art hashtables and DLHT with
64 threads in a memory-resident workload (100M objects).

cur multiple memory accesses per request, and block processing
in three cases. First, most hashtables stall processing on every re-
quest when accessing memory. Second, open-addressing designs
offer impaired Deletes that either cannot reclaim index slots or
must cease processing and rebuild the entire index to do so. Third,
those that support index Resizes block every request until all ob-
jects are copied to the new index. These stalling factors impede the
throughput of state-of-the-art hashtables, rendering them practi-
cally blocking under memory-resident workloads.

In this work, we introduce DLHT, a concurrent hashtable that is
memory access aware and practically non-blocking (i.e., alleviates
stalling) to transcend a billion requests per second in memory-
resident workloads. Defying folklore wisdom [12, 13, 16], DLHT
forgoes open-addressing and adopts a closed-addressing approach.
Its design is based on bounded cache-line-chaining and has the
following features. First, it enables lock-free index operations, in-
cluding deletes with immediate index slot reclamation. Second, it
minimizesmemory traffic and completesmost requests with a single
memory access. Third, it exploits software prefetching to overlap
the memory latency of a request with productive work on other
requests. Finally, it incorporates a novel, non-blocking (but not
lock-free) Resize where requests complete with strong consistency
while a multi-threaded index migration occurs in parallel.

Unlike state-of-the-art designs that trade core functionality for
throughput [2, 6, 9, 12], DLHT provides a complete set of imple-
mented features to accommodate its clients’ needs. Beyond core
functionality, this includes namespaces, variable-sized key-value
pairs, efficient single-thread and hashset variants, as well as pointer
APIs that minimize copies.

We extensively evaluate DLHT on a commodity server using
micro-benchmarks, sensitivity studies, application examples, and
standard single- and multi-key OLTP benchmarks (YCSB, TATP,
and Smallbank). We compare DLHT with eight state-of-the-art
concurrent in-memory designs. DLHT surpasses 1.6B Get (1.4B In-
serts/Deletes, 1B Gets/Puts) requests per second. This is more than
3.5× (3×, 2.7×) the performance of the fastest closed-addressing de-
sign and an order of magnitude faster Deletes than open-addressing
designs. Finally, the parallel and non-blocking resize of DLHT al-
lows for a population that is 3.9× faster than the state-of-the-art.

1



Eurosys’24, April 2024, Athens, Greece A. Katsarakis, V. Gavrielatos, and N. Ntarmos

REFERENCES
[1] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In
Proceedings of the 2013 Conference on Annual Technical Conference (ATC’13).
USENIX, Berkeley, 49–60.

[2] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchronized
Concurrency: The Secret to Scaling Concurrent Search Data Structures. In Pro-
ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’15). Association for
Computing Machinery, New York, NY, USA, 631–644.

[3] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
SIGOPS Oper. Sys. 41, 6 (2007), 5–20.

[4] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association, Seattle, WA,
401–414.

[5] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog,
Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim
Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul,
Doug Terry, and Akshat Vig. 2022. Amazon DynamoDB: A Scalable, Predictably
Performant, and Fully Managed NoSQL Database Service. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 1037–
1048. https://www.usenix.org/conference/atc22/presentation/elhemali

[6] Facebook. 2023. Folly: An open-source C++ library developed and used at Face-
book. https://github.com/facebook/folly.

[7] Bin Fan, David Andersen, and Michael Kaminsky. 2013. MemC3: Compact
and Concurrent MemCache with Dumber Caching and Smarter Hashing. In
Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (nsdi’13). USENIX Association, Berkeley, CA, USA, 371–384. http:
//dl.acm.org/citation.cfm?id=2482626.2482662

[8] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
137–152.

[9] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia, Michael
Kaminsky, David Andersen, Seongil O, Sukhan Lee, and Pradeep Dubey. 2016.
Full-Stack Architecting to Achieve a Billion-Requests-Per-Second Throughput
on a Single Key-Value Store Server Platform. ACM Trans. Comput. Syst. 34, 2,
Article 5 (April 2016), 30 pages.

[10] Hyeontaek Lim, Dongsu Han, David Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-memory Key-value Storage. In Proceedings
of the 11th Networked Systems Design and Implementation (NSDI’14). USENIX
Association, USA, 429–444.

[11] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast
Interconnects. In Proceedings of the 2022 International Conference on Management
of Data (SIGMOD ’22). Association for Computing Machinery, New York, NY,
USA, 1017–1032.

[12] Tobias Maier, Peter Sanders, and Roman Dementiev. 2019. Concurrent Hash
Tables: Fast and General(?)! ACM Trans. Parallel Comput. 5, 4, Article 16 (feb
2019), 32 pages.

[13] Vikram Narayanan, David Detweiler, Tianjiao Huang, and Anton Burtsev. 2023.
DRAMHiT: AHash Table Architected for the Speed of DRAM. In Proceedings of the
Eighteenth European Conference on Computer Systems (EuroSys ’23). Association
for Computing Machinery, New York, NY, USA, 817–834.

[14] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). Association for
Computing Machinery, New York, NY, USA, 1961–1976.

[15] Panagiotis Sioulas, Periklis Chrysogelos,Manos Karpathiotakis, Raja Appuswamy,
and Anastasia Ailamaki. 2019. Hardware-Conscious Hash-Joins on GPUs. In 2019
IEEE 35th International Conference on Data Engineering (ICDE).

[16] Alex Stivala, Peter J. Stuckey, Maria Garcia de la Banda, Manuel Hermenegildo,
and Anthony Wirth. 2010. Lock-Free Parallel Dynamic Programming. J. Parallel
Distrib. Comput. 70, 8 (aug 2010), 839–848.

2

https://www.usenix.org/conference/atc22/presentation/elhemali
https://github.com/facebook/folly
http://dl.acm.org/citation.cfm?id=2482626.2482662
http://dl.acm.org/citation.cfm?id=2482626.2482662

	Abstract
	1 Introduction
	References

