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ABSTRACT
This paper presents DLHT, a concurrent in-memory hashtable. De-
spite efforts to optimize hashtables, that go as far as sacrificing
core functionality, state-of-the-art designs still incur multiple mem-
ory accesses per request and block request processing in three
cases. First, most hashtables block while waiting for data to be
retrieved from memory. Second, open-addressing designs, which
represent the current state-of-the-art, either cannot free index slots
on deletes or must block all requests to do so. Third, index resizes
block every request until all objects are copied to the new index. De-
fying folklore wisdom, DLHT forgoes open-addressing and adopts
a fully-featured and memory-aware closed-addressing design based
on bounded cache-line-chaining. This design 1 offers lock-free
operations and deletes that free slots instantly, 2 completes most
requests with a single memory access, 3 utilizes software prefetch-
ing to hide memory latencies, and 4 employs a novel non-blocking
and parallel resizing. In a commodity server and a memory-resident
workload, DLHT surpasses 1.6B requests per second and provides
3.5× (12×) the throughput of the state-of-the-art closed-addressing
(open-addressing) resizable hashtable on Gets (Deletes).

1 INTRODUCTION
Concurrent in-memory hashtables are essential and versatile data
structures in the modern cloud. They are responsible for storing and
accessing large amounts of data inmainmemory via thread-safeGet,
Put, Insert, and Delete requests. To ensure requests complete rapidly
as the dataset expands, hashtables must be also able to efficiently
Resize their index. In-memory hashtables serve a wide spectrum of
applications, including in-memory storage, online services, caching,
key-value stores, and transactional databases [1, 3, 4, 7, 10].

To meet the ever-growing performance demands [1, 5], state-of-
the-art hashtables from industry and academia offer designs that
attain close to a billion requests per second on a single server [2, 8, 9,
11, 12, 14, 15]. Problematically, their evaluation hints that such high
throughput is reachable only under cache-resident workloads where
accesses are served by hardware caches and seldom reach main
memory – i.e., due to small datasets [2], data partitioning [11, 14, 15],
or highly skewed accesses [8, 9, 12]. So we pose the following
question: Can state-of-the-art in-memory hashtables attain a billion
requests per second under a memory-resident workload?

To answer this question, we evaluate eight state-of-the-art de-
signs over a memory-resident workload of 100 million objects ac-
cessed uniformly on a commodity server. As shown in Figure 1,
almost all hashtables are more than 2× slower than a billion re-
quests per second. The most recent work, DRAMHiT [13], is the
only one close to the target (in Gets), but its open-addressing design
hinders Deletes and Resizes. Hence, achieving a billion requests
per second without forfeiting core functionality on a commodity
server remains a challenge for memory-resident workloads.

In a deeper inspection (detailed in our poster), state-of-the-art
designs offer lock-free accesses but sacrifice core functionality, in-

Figure 1: Throughput of state-of-the-art hashtables and DLHT with
64 threads in a memory-resident workload (100M objects).

cur multiple memory accesses per request, and block processing
in three cases. First, most hashtables stall processing on every re-
quest when accessing memory. Second, open-addressing designs
offer impaired Deletes that either cannot reclaim index slots or
must cease processing and rebuild the entire index to do so. Third,
those that support index Resizes block every request until all ob-
jects are copied to the new index. These stalling factors impede the
throughput of state-of-the-art hashtables, rendering them practi-
cally blocking under memory-resident workloads.

In this work, we introduce DLHT, a concurrent hashtable that is
memory access aware and practically non-blocking (i.e., alleviates
stalling) to transcend a billion requests per second in memory-
resident workloads. Defying folklore wisdom [12, 13, 16], DLHT
forgoes open-addressing and adopts a closed-addressing approach.
Its design is based on bounded cache-line-chaining and has the
following features. First, it enables lock-free index operations, in-
cluding deletes with immediate index slot reclamation. Second, it
minimizesmemory traffic and completesmost requests with a single
memory access. Third, it exploits software prefetching to overlap
the memory latency of a request with productive work on other
requests. Finally, it incorporates a novel, non-blocking (but not
lock-free) Resize where requests complete with strong consistency
while a multi-threaded index migration occurs in parallel.

Unlike state-of-the-art designs that trade core functionality for
throughput [2, 6, 9, 12], DLHT provides a complete set of imple-
mented features to accommodate its clients’ needs. Beyond core
functionality, this includes namespaces, variable-sized key-value
pairs, efficient single-thread and hashset variants, as well as pointer
APIs that minimize copies.

We extensively evaluate DLHT on a commodity server using
micro-benchmarks, sensitivity studies, application examples, and
standard single- and multi-key OLTP benchmarks (YCSB, TATP,
and Smallbank). We compare DLHT with eight state-of-the-art
concurrent in-memory designs. DLHT surpasses 1.6B Get (1.4B In-
serts/Deletes, 1B Gets/Puts) requests per second. This is more than
3.5× (3×, 2.7×) the performance of the fastest closed-addressing de-
sign and an order of magnitude faster Deletes than open-addressing
designs. Finally, the parallel and non-blocking resize of DLHT al-
lows for a population that is 3.9× faster than the state-of-the-art.
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