
OpenCV hardware acceleration with vAccel

Maria Goutha, Ilias Lagomatis, Anastassios

Nanos

{mgouth,ilago,ananos}@nubis-pc.eu
NUBIS PC

Greece

Alexandros Patras

patras@uth.gr
University of Thessaly

Greece

Abstract

The rise of data from low-power devices has increased the

demand for Edge processing capabilities; specialized process-

ing units and general-purpose hardware accelerators offer

notable performance gains for Cloud workloads. Virtualiza-

tion techniques are employed for user and data isolation,

but sharing generic hardware accelerators among untrusted

tenants presents challenges. vAccel addresses these chal-

lenges by decoupling function calls from hardware-specific

implementations through plugins. In this work, we present

preliminary findings from the integration of OpenCV to vAc-

cel , initial evaluation results, and discussions on challenges

and future steps.

1 Introduction & Motivation

Fine-tuning the execution of a Computer Vision (CV) appli-

cation presents a number of challenges, mostly associated

with I/O arguments and the underlying systems stack that

supports it. The benefits from being able to customize the

execution of a multi-component CV application are numer-

ous, mostly related to Performance Optimization, Scalability,
Adaptability to Hardware Constraints, Customization, Ease of
Development and Future-proofing.

The ability to switch between GPU and CPU implementa-

tions [1] based on real-time requirements can significantly

improve overall execution speed. For tasks that demand quick

processing, utilizing the parallel processing power of GPUs

can lead to substantial time savings. vAccel
1
adapts to the

available hardware resources, ensuring that applications can

run on a variety of devices with different capabilities. De-

velopers can fine-tune the execution based on the specific

needs of their applications. For instance, tasks that can toler-

ate lower accuracy might prioritize faster execution, while

others might require a more accurate but slower approach.

vAccel decouples the process of building applications

with accelerated functions from the implementation of the

accelerator code. Applications based on vAccel are com-

patible with any existing or future acceleration framework.

vAccel ’s user-facing, user-extendable API is not tied to any

vendor/hardware-specific, low-level or high-level software

stack. By embedding accelerator code into plugins, an applica-
tion using vAccel can select the necessary implementation

at runtime, without any source modifications. Additionally,

vAccel provides a modular architecture to transport data in

1
https://docs.vaccel.org

virtualized or remote environments. This design simplifies

application-execution paths and, thus, increases execution

security by reducing the attack surface, while at the same

time ensures minimal footprint for each tenant.

2 vAccel OpenCV Bindings

We introduce language specific bindings, tailored to OpenCV

unique function definitions and arguments. In addition, we

provide helper functions to facilitate the serialization / de-

serialization of non-scalar arguments. In the specific case

of OpenCV, due to its C++ base, we need to directly link

existing applications with the external bindings library. As

a result, minimal code changes are required
2
. We plan to

investigate this further, so that we can overload OpenCV

functions at runtime, without any user-code modifications.

3 Use Case: Obstacle Avoidance

The fundamental idea behind obstacle avoidance involves

assessing whether an object’s distance from a sensor, such

as a stereo camera or ultrasonic sensor, is closer than a pre-

defined threshold. To build an obstacle avoidance system

with a stereo camera, the process involves obtaining a depth

map, segmenting regions based on a depth threshold, de-

tecting contours, identifying the largest contour and, finally,

calculating the average depth [2].

4 Initial Results & Plan

Initial results seem promising, allowing workloads confined

in AWS Firecracker microVMs to enjoy hardware accelera-

tion (≈ 60% better performance), while adding ≈ 30% over-

head compared to native execution for CPU-only cases (re-

lated to transport and SerDe
3
overheads). The challenges

we face moving forward include minimizing the SerDe over-

heads, optimizing the transport layer and generalizing the

approach to include diverse OpenCV-related workflows.

References

[1] Batuhan Hangün and Önder Eyecioglu. 2019. Performance Comparison

Between OpenCV Built in CPU and GPU Functions on Image Processing

Operations. CoRR abs/1906.08819 (2019). arXiv:1906.08819 http://arxiv.
org/abs/1906.08819

[2] Jianying Yuan, Tao Jiang, Xi He, Sidong Wu, Jiajia Liu, and Dequan

Guo. 2023. Dynamic obstacle detection method based on U–V disparity

and residual optical flow for autonomous driving. Scientific Reports 13
(05 2023). https://doi.org/10.1038/s41598-023-34777-6

2
an extern "C" definition of the function prototype – no user logic change

3
Serializer/Deserializer

1

https://arxiv.org/abs/1906.08819
http://arxiv.org/abs/1906.08819
http://arxiv.org/abs/1906.08819
https://doi.org/10.1038/s41598-023-34777-6

	Abstract
	1 Introduction & Motivation
	2 vAccel OpenCV Bindings
	3 Use Case: Obstacle Avoidance
	4 Initial Results & Plan
	References

