
We Need Volunteer Spirit! for Speeding Up
Consolidated DPDK Applications
Yuki Tsujimoto, Kenta Ishiguro, Kenichi Yasukata, Kenji Kono

Keio University

In a cloud computing context, oversubscribing hardware re-
sources by consolidating multiple virtual machines (VMs) on
a single physical server is a promising approach to improve
hardware utilization. However, we observed that network-
intensive workloads, one of the most important workloads
in cloud environments, do not always benefit from CPU
oversubscription.

Problem. The two traditional mechanisms, interrupt and
polling, are used to invoke the execution of networked ap-
plications. Both mechanisms do not fit well with CPU over-
subscription because networked applications on the consoli-
dated VMs suffer from additional virtualization overhead or
low resource utilization when using these mechanisms.

Using hardware interrupts triggered by a NIC at a packet
reception is the most widely applied mechanism to invoke
the execution of networked applications. Fig. 1 shows how
two networked applications with each mechanism handle
five packets when they are consolidated on the same CPU. In
Fig. 1, the interrupt-based mechanism suffers from frequent
context switches from hardware interrupts at each packet
arriving. This issue gets worse when receiving packets at
a high rate because frequent context switches caused by
interrupts consume many CPU cycles.

A polling-basedmechanism is applied in some systems like
DPDK to mitigate the overhead highlighted by the interrupt-
based mechanism. This mechanism turns off interrupts and
monitors NIC registers in the context of networked appli-
cations. While this mechanism eliminates the performance
overhead caused by handling interrupts, it lowers effective
resource utilization by wasting CPU cycles. For example, as
shown in Fig. 1, vCPU 0 wastes CPU cycles by monitoring
NIC registers after processing three packets, even though
vCPU 1 is waiting to process a packet. Consequently, the
overall performance of consolidated networked applications
with the polling-based mechanism is substantially limited.

other tasks

irqPolling

Interrupt

Yield

vCPU0 timeslice vCPU1 timeslice packets to vCPU0 packets to vCPU1

irq

irqirqirqirq yi
el

d

irq irq irq

yi
el

d

yi
el

d

yi
el

d

yi
el

d

yi
el

d

yi
el

d No packets to process

Figure 1. Timeline of two networked applications on a single
physical CPU handling packets. The uncolored boxes depict
the CPU cycles that do not contribute to processing packets.

Approach. To mitigate the resource inefficiency, we pro-
pose a voluntary yield mechanism by modifying DPDK ap-
plications. In our approach, DPDK applications use the tradi-
tional polling-based approach, but they yield up their CPU
cycles with a yield hypercall once they observe an empty
NIC queue, even if they do not use up their allocated CPU cy-
cles. For example, as shown in Fig. 1, vCPU 0 processes three
incoming packets and then yields up its CPU cycles before
exhausting the remaining timeslice. By doing this, the volun-
tary yield approach can eliminate meaningless monitoring
of DPDK applications and improve resource efficiency.

0 10 20 30 40
Connections

0

200

400

600

To
ta

l t
hr

ou
gh

pu
t

(K
 re

qu
es

ts
/s

)

polling interrupt yield

Figure 2. Aggregated throughput of two DPDK-applied
HTTP servers running on a single physical CPU.

Experiments. Fig. 2 shows the aggregated throughput
of two DPDK-applied HTTP servers with different numbers
of TCP connections123. Each HTTP server runs inside a 1-
vCPU VM4 on Xen 4.12 and those two VMs are consolidated
on a single physical CPU.

The proposed trick exhibits the best performance among
the three schemes. These results demonstrate that 1) fre-
quent interrupts invoked by the network interfaces diminish
the performance of networked applications running on VMs,
2) the polling mode, where VMs do not voluntarily yield the
CPU time, negates the cumulative performance because the
CPU cycles are wasted just for monitoring the NIC regis-
ters, and 3) the proposed trick, disabling interrupts while
yielding CPU cycles accordingly, complements the limita-
tions of the existing approaches, consequently, achieves high
performance.
1We conducted the experiment on one server machine and one client ma-
chine. Both machines contain a 3.80 GHz 6-core Intel Xeon E-2276G proces-
sor with 32 GB of RAM and a 10 Gb SR-IOV capable Intel X540 NIC.
2The interrupt mode uses the DPDK’s epoll facility.
3The client runs wrk2 to generate HTTP requests.
4We dedicated a virtual function of the SR-IOV NIC to each VM.


