
PAM: Fast reactive reconfiguration for stateful stream
processing

Pritish Mishra
University of Toronto
pritish@cs.toronto.edu

Oana Balmau
McGill University

oana.balmau@cs.mcgill.ca

Eyal de Lara
University of Toronto
delara@cs.toronto.edu

ABSTRACT
Stream processing frameworks such as Flink and Storm are
powerful tools to manage applications on the cloud that
require high throughput and real-time data processing. How-
ever, new applications like traffic monitoring, autonomous
driving, and augmented/virtual reality-based interactive en-
vironments rely on distributed data generated by remote
sensors or cameras. Processing this data in a single cloud
data center may be infeasible as it requires sending the data
from the remote sources to the cloud, running up against
cost, bandwidth, and latency limits.
To address these requirements, such modern streaming

applications are being deployed on a combination of geo-
distributed cloud and edge datacenters. In this cloud-edge
infrastructure, while nodes closer to the edge reduce the
data transferred to the cloud and result in lower latency, the
cost of running applications on edge resources is very high.
Hence, to balance the objectives of cost and performance,
the application operators are initially deployed on the cloud
and only when there is sufficient increase in user demand,
the application is reconfigured to deploy specific operators
on the edge nodes to bring processing closer to the data pro-
ducers. Such a reconfiguration of the application is usually
predicated by a change in user traffic and the amount of data
generated. Another cause for application reconfiguration
could be the mobility of data sources. When a data source
moves from one edge to another, the operators processing
the data for this source must also be migrated accordingly.

Reconfiguration of application operators is a challenging
problem, especially for stateful operators. Stateful operators
usually store information that is used for future computation,
e.g. for a traffic monitoring application, state stored for a car
could be its position and current average speed. Reconfig-
uration of such operators requires moving the state of the
operator alongwith this processing and needs to address four
key challenges: (i) maintaining guarantees of in-order and
exactly-once processing of tuples produced by data sources;
(ii) preserving state correctness, since tuples that can modify
the state are being processed concurrently with the state
migration; (iii) avoiding global coordination, which is expen-
sive in geographically distributed deployments due to the
high latency of network links; and (iv) avoiding overheads
while the application is not being reconfigured.

Since scenarios demanding reconfiguration cannot always
be predicted well in advance, two key goals of a stream pro-
cessing framework are - a) to minimize the time taken to
perform the application reconfiguration and b) to minimize
its impact on application performance. Existing reconfigura-
tion approaches incur application stoppage ranging from a
few seconds to hundreds of milliseconds which is not tolera-
ble for edge applications requiring real-time processing.

We present PAM - a Push-based Adaptive Migration tech-
nique to perform reconfiguration of stateful applications
experiencing sudden spikes in user demand. Two key ideas
utilized in our migration protocol are - a) the state of one
data source is migrated at a time and once this migration is
completed, processing of tuples belonging to this data source
is resumed on the destination instance, and b) it looks ahead
the backlog of tuples awaiting processing and leverages pat-
terns in this backlog to the schedule the order of transfer of
state for data sources. This adaptive scheduled transfer for
data sources using patterns like tuple arrival order and skew-
ness in the traffic of some data sources reduces the amount of
time that the destination instance has to wait to receive the
state stored for each data source and resume the processing.
Specifically, by adaptively moving the state, our algorithm
ensures that the transfer cost of the moving state of a data
source is interleaved by the processing cost of tuples for data
sources whose state has already been transferred.
The benefit of using a push-based mechanism where the

source instance decides the transfer order of the data source
state eliminates the need for message passing between the
source and destination instances to co-ordinate the transfer.
Our theoretical evaluation shows that PAM can achieve

shorter reconfiguration duration than existing state reconfig-
uration protocols. Our empirical evaluation on a hierarchical
network composed of geographically distributed Amazon
datacenters shows that PAM can achieve 45-60% reduction in
the time taken to stabilize the application performance and
minimizes the application stoppage to 10–15 milliseconds.
We also show that this performance remains stable even with
the increase of state stored per data source, increase in the
number of data sources, and increase in the number of edges.
Finally, we show that this approach supports the mobility of
data sources across edges and migrates state of the moving
data source seamlessly across the edges.


	Abstract

