
Toward Efficient Formal Verification of Reference
Monitors for Isolated Execution

Ryo Nakashima
The University of Tokyo

Tokyo, Japan

Takahiro Shinagawa
The University of Tokyo

Tokyo, Japan

EXTENDED ABSTRACT
Recent growth in cloud computing increases the importance
of leveraging isolated execution, from classical isolation with
processes and virtual machines tomodern trusted computing,
to enhance security. The security of isolated execution relies
on system software that serves as trusted computing base
(TCB), i.e., OS kernels, hypervisors, and enclave software,
which are assumed to work correctly. However, increasing
functional requirements for system software often bloat the
TCB size, making it difficult to guarantee their correctness.

Formal verification is an effective method to improve
security by verifying that a system satisfies certain properties.
However, formal verification is a time-consuming task that
requires significant effort by experts, making it difficult to
apply to large-scale software. In addition, formal verification
only guarantees certain properties that are explicitly verified,
making it difficult to mitigate a variety of attacks based on
arbitrary code execution. Therefore, to deal with diversified
attacks with limited effort, verification targets and properties
need to be carefully selected.

Several studies take the approach of simplifying the code
to be verified. Sridhar et al. [2] target a security-relevant
component called inlined reference monitors and use model
checking to prove conformance to security policy. However,
they only verify conformance under specific conditions and
do not consider various attacks. Komodo [1] presents an
approach to efficiently prove the entire isolation among TEE
enclaves and the OS by verifying a simple software manager
for the enclaves. However, while many of the management
functions are not directly related to security, the correctness
of these functions must be verified together in order to prove
the overall isolation.

Our approach to efficient formal verification is to focus on
security-critical components while assuming a wide variety
of attacks. The security-critical components we focus on are
reference monitors, which are access control components
that operate at the interface between isolated execution
environments and are embedded in or add-in to the TCB
system software. Since reference monitors directly handle
input from attackers and are often the target of attacks, their
formal verification is a cost-effective way to improve security.

As a first step toward formal verification of general refer-
ence monitors, we target the time-of-check-to-time-of-use

(TOCTTOU) problem in monitoring system calls. TOCTTOU
is a timing attack in which the object to be accessed is
replaced by another object after the reference monitor has
checked the access rights to the object but before the subject
actually accesses the object. The challenge in verifying
against TOCTTOU attacks is the diversity of attacks; there
are many combinations of interleaving system calls that
can cause race conditions, and reference monitors must be
verified against all such combinations.

To address this challenge, we introduce a two-step exhaus-
tive verification with automatic verification code generation
and parallel verification. Based on a predefined access
model for defining sequences of system call operations and
arguments that can lead to race conditions, we exhaustively
generate code for monitored subjects and attackers that can
cause TOCTTOU. We then perform model checking against
reference monitors in parallel for each generated code. This
two-step verification allows to verify that reference monitors
can correctly enforce a given security policy without causing
TOCTTOU even if an attacker issues arbitrary system calls
at arbitrary timing and in arbitrary order.
We develop our framework on top of Linux. To explore

interleaving for concurrent file access, we implement a mock
file system that emulates theminimum functionality required
for verification. The internal data structures of files are
provided by Loom, the model checker used in this study,
to identify relevant interleaving. All code is implemented
in Rust to take advantage of memory safety and reduce
verification effort.

We evaluated our framework in a case study: we verified
the conformance to a file access policy under the conditions
of one access pattern (call to open), one vulnerability (sym-
link race), and one attack pattern (re-linking of target files).
As a result, we confirmed that the verification succeeded for
a reference monitor with a symlink race countermeasure,
but failed for one without the countermeasure.

REFERENCES
[1] Andrew Ferraiuolo et al. Komodo: Using verification to disentangle

secure-enclave hardware from software. In Proc. 26th Symposium on
Operating Systems Principles, pages 287–305, 2017.

[2] Meera Sridhar et al. Model-checking in-lined referencemonitors. In Proc.
International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 312–327, 2010.


	References

