
xmap: Transparent, Hugepage-Driven Heap Extension
over Fast Storage Devices

Ioannis Malliotakis
ICS-FORTH & University of Crete

Heraklion, Greece
jmal@ics.forth.gr

Anastasios Papagiannis
Isovalent

Athens, Greece
anastasios.papagiannis@isovalent.com

Manolis Marazakis
ICS-FORTH

Heraklion, Greece
maraz@ics.forth.gr

Angelos Bilas
ICS-FORTH & University of Crete

Heraklion, Greece
bilas@ics.forth.gr

Abstract
Increasing dataset sizes requires that applications use larger
heaps. Two characteristic examples are graph analytics and
machine learning (ML), both emergingworkloadswith rapidly
increasing memory demands. With recent technology lim-
itations in DRAM scaling, one important question is how
to grow the heap further. One approach is the use of spe-
cialized out-of-core frameworks which can process datasets
larger than the available DRAM capacity. However, devel-
oping and tuning such frameworks for performance is both
complex and time-consuming, and frameworks for graph an-
alytics and ML have traditionally been in-memory. Another
approach for extending the application heap transparently to
applications is fast, block-addressable storage devices, such
as NVMe SSDs, over the OS memory mapped I/O (mmio) or
swapper (swap) path. These paths allow the extension of the
application heap without application modifications through
the abstraction of the process virtual address space.

Although both mmio and swap are part of the core kernel
operation, they have significant limitations for use with ap-
plication heaps. First, they fail to scale beyond 8 cores due
to shared structure contention in OS paths stressed during
heap extension, namely the page fault, page reclamation and
page writeback paths. Second, they do not offer read-write
support for hugepages over block storage. Hugepages are
contiguous memory frames larger than the regular page size
(e.g., 2MB or 1GB on x86_64), which can be mapped with
a single TLB and (huge) page table entry. Hugepages have
received increased attention in in-memory setups for their
potential to reduce CPU cycles spent on TLB misses, and
reduce page faults, thus reducing kernel processing software
overheads. Applying hugepages to heap extension can aid in
harnessing the increasing throughput capabilities of NVMe
SSDs. Third, they offer limited asynchronous operations,
which are important to mask the higher latency of the back-
ing storage medium, namely aggressive readahead, which is
ill-fitted for heap extension, where memory must be treated
as a scarce resource.

Driven by these limitations, we design xmap as an alterna-
tive mmio path for the Linux kernel, tailored towards heap
extension over fast block storage devices. xmap provides im-
proved scalability, support for transparent hugepages over
block-based storage, and asynchronous hugepage promo-
tions. To our knowledge, xmap is the first system that pro-
vides this support for the Linux kernel. xmap is implemented
as a kernel module, requiring no kernel modifications. It
utilizes its own preallocated and statically divided regular
and hugepage pools, to operate under a strict DRAM budget
and prevent external memory fragmentation due to the use
of hugepages. It organizes pages in its own sharded page
cache and metadata structures, to mitigate shared structure
contention and improve scalability. xmap utilizes hugepages
either via explicit application demand (i.e.,madvise) or trans-
parently in a policy-driven manner. xmap supports both
the synchronous preparation and mapping of hugepages
to the application address space at page fault time, and
the asynchronous promotion of hugepage-sized virtual ad-
dress ranges from mapping to regular pages to mapping to a
hugepage.

We first examine the performance implications of extend-
ing the application heap over NVMe SSDs, by characteriz-
ing the application-perceived memory access latency and
throughput through LMbench workloads. We then evalu-
ate xmap with a random page fault microbenchmark, a ma-
chine learning workload (LIBLINEAR), and graph processing
frameworks (Ligra+, GridGraph), by transparently extending
their heap over storage without any code modifications. We
find that xmap scales beyond 8 cores, increasing random page
fault throughput by up to 3.9× compared to Linux mmap.
When using a heap/DRAM ratio of 2×, xmap improves linear
regression training time by up to 7.9× compared to Linux
mmap. xmap allows an in-memory graph processing frame-
work (Ligra+) to perform comparably to or even better than
a hand-written out-of-memory graph processing framework
(GridGraph) when processing graphs 4×-8× larger than the
available DRAM, without any code modifications.

1



Conference’17, July 2017, Washington, DC, USA Ioannis Malliotakis, Anastasios Papagiannis, Manolis Marazakis, and Angelos Bilas

Acknowledgments
We thankfully acknowledge the support of the European
High-Performance Computing Joint Undertaking (EuroHPC
JU) under project EUPEX (grant agreement No 101033975).

The EuroHPC JU receives support from the EuropeanUnion’s
Horizon 2020 research and innovation programme and France,
Germany, Italy, Greece, United Kingdom, Czech Republic,
Croatia.

2


	Abstract
	Acknowledgments

