
Breaking the LSM Tail-latency Barrier by Revisiting Growth Factors

Giorgos Xanthakis
ICS-FORTH & University of Crete

Heraklion, Greece
gxanth@ics.forth.gr

Antonis Katsarakis
Huawei

Edinburgh, Scotland
antonios.katsarakis@huawei.com

Giorgos Saloustros
ICS-FORTH & University of Crete

Heraklion, Greece
gesalous@ics.forth.gr

Angelso Bilas
ICS-FORTH & University of Crete

Heraklion, Greece
bilas@ics.forth.gr

Abstract
The datacenter storage stack is able to handle a wide range
of workloads, including both read and write operations. The
foundation to manage these workloads is the log-structured
merge tree (LSM-tree). LSM-trees support highwrite through-
put and acceptable read performance but suffer from long
write stalls and high tail latency. To provide acceptable user-
facing tail latency, current LSM-tree implementations use
incremental compaction to stall for a limited time, usually
in the order of a few seconds. To mitigate the long write
stalls in production environments, companies overprovision
their infrastructure, to prevent a large number of requests
reaching a single server [1].

In this work, we analyze the causes of tail latency in LSM
KV stores employing incremental compaction. Due to the
nature of the LSM-tree structure, the size of each level in-
creases by a factor of 𝑓 (growth factor) from the previous
level. This results in 𝑁 levels with the size of the 𝑛-th level
being 90% of the total storage capacity and the 𝑁 − 1 levels
being the 10% of the total capacity. Additionally, because in-
cremental compaction partially frees space from each level,
it always operates on levels that are (nearly) full, except for
the last level. As a result, the amount of work incremental
compaction performs is 𝑁 − 1 compactions for every 𝐿0 com-
paction, resulting in the common path in long compaction
chains with multiple GBs of work.
Current LSM-based systems create not only long com-

paction chains but also fat compaction chains. With the typ-
ical Sorted String Tables (SST) size (64 MB), and the growth
factor for each compaction, the average amount of work for
each SST is 𝑓 times the SST size. Traditionally, LSM-based
systems require compacting lower levels to create space for
higher levels, forming long chains of compactions in this
process. Thus, systems using incremental compaction still re-
sult in high tail latency and long write stalls to free memory
in 𝐿0.
LSM based systems are optimized for devices with a few

hundreds IOPs (Hard Disk Drives) that was the right choice
when HDDs were the dominant storage technology. How-
ever, the storage landscape has changed, and new storage
technologies have emerged, such as Non-Volatile Memory

Express (NVMe) SSDs. These devices are designed for mil-
lions of IOPs and provide high performance with small I/O
sizes. LSM systems are not designed to exploit the capabil-
ities of fast storage devices, such as NVMe SSDs, and fully
utilize their characteristics, such as high performance with
smaller I/O sizes and millions of IOPs.
Today, the state-of-the-art LSM KV store that uses incre-

mental compaction is RocksDB [3]. However, according to
engineers in Meta [1, 2], the tail latency of RocksDB is not
a concern for them for two reasons. Firstly, Meta overpro-
visions each RocksDB instance, maintaining a low request
rate per second (10000 queries per second) on the average
case. Secondly, on average, Meta utilizes 40% of the stor-
age capacity [2], thus not observing long write stalls due to
overprovisioning.
In this paper, we present sLSM, a new LSM-tree design

that reduces write stalls and tail latency by exploiting the
characteristics of NVMe SSDs. sLSM achieves the following
design goals: (1) decrease the amount of work per compaction
with smaller SSTs, (2) maintain the same number of levels
with state of the art approaches using a variable growth
factor between levels, and (3) use variable size SSTs to control
I/O amplification for levels that employ variable growth
factor.
We implement sLSM as an extension in RocksDB and

evaluate its efficiency examining and measuring tail latency
with different workloads. Preliminary results show that sLSM
when compared to RocksDB reduces 99th tail-latency by
4.5×, for YCSB Load A. Finally, for mixed workloads (YCSB
Run A), it reduces write tail latency by 4.8× and read tail
latency by 12.5×.

We thankfully acknowledge the support of the European
Commission under project DaFab (GA No.101128693).

References
[1] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. Char-

acterizing, modeling, and benchmarking rocksdb key-value workloads
at facebook. In Proceedings of the 18th USENIX Conference on File and
Storage Technologies, FAST’20, page 209–224, USA, 2020. USENIX Asso-
ciation.

[2] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm.
Rocksdb: Evolution of development priorities in a key-value store serv-
ing large-scale applications. ACM Trans. Storage, 17(4), oct 2021.

1



Conference’17, July 2017, Washington, DC, USA Giorgos Xanthakis, Antonis Katsarakis, Giorgos Saloustros, and Angelso Bilas

[3] Facebook. Rocksdb. http://rocksdb.org/, 2018.

2

http://rocksdb.org/

	Abstract
	References

