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GPUs are necessary for accelerating applications. However
they often remain underutilized [1, 5–8, 13–15] because solo
executions cannot always fully utilize their resources. To
share a GPU to multiple applications, previous work try to
virtualize accelerators [3, 9, 14] or to provide Infrastructure
as a Service (IaaS) [2, 4, 11]. Other virtualization techniques,
such as full- [10] and para [12] virtualization, have limited
applicability due to the requirement for custom drivers [14].
API remoting [2, 9, 14] is the only stable and efficient tech-
nique for accelerator abstraction. Existing API remoting ap-
proaches [2–4, 9, 11, 14] intercept partially the CUDA driver
and runtime API, as well as the high-level calls of CUDA
accelerated libraries (e.g., cuBLAS and cuDNN).

This three-level interception approach requires handling
more than 2000 calls though, most of which have complex
semantics that change often. For example, just to support
cuBLAS, cuRAND, and cuFFT, we need to handle more than
1600 high-level calls, a process that is usually performed of-
fline by hand. As a consequence, previous work [2, 3, 14] offer
limited support for complex frameworks, such as PyTorch,
Tensorflow, and GROMACS. To make matters worse, high-
level calls of CUDA accelerated libraries (e.g., cublasIsamax)
perform implicit CUDA calls that are hidden from the devel-
oper. These calls execute both host and device code, which
does not scale in client-server setups where the CPUs are
not designed to perform computations.

In this paper, we propose CUInterposer, a fine-grain inter-
ception mechanism at the CUDA driver and runtime library.
The design of CUInterposer provides a clear boundary be-
tween CPU and GPU code, that allows to fully support popu-
lar frameworks, such as PyTorch. More specifically, CUInter-
poser intercepts the whole CUDA driver and runtime library
that consists of 400 relatively simple calls. Due to the sim-
plicity of these calls, the interception process is automated,
leading to zero manual effort as opposed to previous works.
Finally, we can distinguish host and device calls because
our approach intercepts the implicit calls performed from
closed-source high-level function calls of CUDA accelerated
libraries. As a result, with CUInterposer, only the device code
is forwarded to the server, whereas the host code is executed
in the client. We effectively address the following challenges:

Intercept only CUDA runtime and driver libs. CUIn-
terposer intercepts all the CUDA driver and runtime calls
by dynamically preloading the execution of the applications.
CUDA libraries make use of an undocumented data structure

named export table that contains function pointers to hidden
CUDA calls. CUInterposer uses a minimal implementation
of these hidden CUDA calls, which is, however, adequate to
run complex frameworks. Additionally, we have found that
only the static version of CUDA closed-source accelerated
libraries link with CUDA driver and runtime. In contrast, the
shared version includes the whole CUDA, making intercept-
ing prohibitive. To avoid linking applications with the static
version of CUDA accelerated libraries, we create a shared
version that internally uses the static versions of libraries.

Support closed-source libraries. CUInterposer inter-
cepts the implicit calls performed from high-level CUDA ac-
celerated. For the CUDA runtime library, it replaces the orig-
inal library using ld_preload. For the CUDA driver library,
we intercept the dlopen system call, which CUDA uses to de-
couple applications from GPUs. CUDA kernels are registered
to the GPU driver using cudaRegisterFunction and are
launched using the cudaLaunchkernel. cudaLaunchkernel
uses a pointer provided by the cudaRegisterFunction to is-
sue a kernel for execution. However, this pointer is not valid
to the server address space. As a result, CUInterposer client
in our cudaRegisterFunction creates a map with the ker-
nel pointer and name. During cudaLaunchkernel, the client
sends the kernel string to the server. CUInterposer during
an offline extracts all the PTXs for the available frameworks
and libraries and places them in the server. During the server
startup, we create a key-value pair with the kernel name as
the key and the pointer as the value, so upon the receipt of
a string, we can find the appropriate pointer kernel.

The main contributions of this work are:
• We design, implement, and evaluate two interception
approaches at different granularity levels, the one at
the CUDA driver and runtime level, and the other
includes the high-level library calls.

• We implement tools that automatically generate stubs
for intercepting CUDA applications. Our tool requires
only the CUDA header files; hence, it supports all
CUDA versions fully automatically.

• Our preliminary evaluation shows that our approach
can fully support complex frameworks, such as Py-
Torch, which we use for performance evaluation.
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