
GraphGen: A Distributed Graph Sample Generation
Framework on Industry-Scale Graphs

Yue Jin, Sheng Tian, Yongchao Liu, Chuntao Hong
Ant Group, China

The field of graph computing and graph learning is currently
experiencing a significant increase in scale. To illustrate,
platforms like Facebook, with approximately 3 billion users,
generate trillions of connections through user interactions,
relationships, and posts, forming a massive graph with one
trillion edges. As time progresses, the scale of the graph will
continue to grow as users continue to engage and share con-
tent. However, performing graph computing and learning
on such large-scale graphs presents considerable challenges.
Issues related to data processing, storage, and model train-
ing emerge as obstacles to overcome. One widely accepted
approach to addressing these challenges is by extracting sub-
graphs from the large-scale graphs for subsequent graph
computing and learning. By extracting subgraphs, the com-
plexity of data processing and training for each iteration can
be reduced, leading to much higher efficiency. However, as
the size of the graph continues to expand, traditional meth-
ods like SQL (input-output bound) for complex subgraph
extraction and generation, like k-hop neighbor sampling
and long-range random walk sampling, become increasingly
inefficient. This paper introduces a novel solution to industry-
scale graphs in the form of a distributed graph sample gener-
ation framework. This framework employs distributed graph
computing techniques to efficiently partition the large-scale
graph and generate the required subgraphs in each graph
partition in main memory, overcoming the limitations of
existing methods. Compared with traditional methods such
as SQL, our approach achieves 20× speedup on our indus-
trial graph dataset of Alipay with 530 million nodes
and 5 billion edges.

Graph Sample Generation Framework: The input for
our graph sample generation process consists of a base graph
𝐺 and a set of seed nodes 𝑆 . These seed nodes represent the
nodes of interest, and each subgraph generated originates
from a specific seed node. To distribute the workload evenly
among distributed machines, we employ a graph partitioning
technique to divide the base graph. Each machine is assigned
the task of generating its own subgraphs, specifically finding
neighbor subgraphs starting from the assigned seed nodes.
Furthermore, the generated subgraphs are stored in a key-
value store. This store holds essential information about the
subgraph, including its topology, as well as the features of
its nodes and edges. Once the important subgraphs have
been generated, they can be utilized for graph computing
and learning tasks. For example, graph learning training
tasks involve grouping multiple subgraphs together to form

a mini-batched graph data. During each mini-batch iteration,
a specific subset of the subgraphs is selected and loaded to
train a graph neural network model.
Our current system offers support for a wide range of

graph sampling algorithms, encompassing considerable well-
established techniques including k-hop neighbor sampling,
meta-path sampling, random walk sampling, ego-network
sampling, node2vec sampling and more.
Implementation: Our implementation consists of two

core components: graph partitioning and graph sampling.
To address graph partitioning, we employ edge partition-

ing to divide the graph by cutting the vertices. This approach
aims to distribute the workload as evenly as possible among
the workers. Given that power-law distributions are com-
monly observed in industrial graph data, edge partitioning
proves advantageous in achieving load balancing. Moreover,
it helps prevent scenarios where a single worker is burdened
with all hot-spots and edges.

In the context of graph sampling, we apply our Exchange-
Apply-Scatter (EAS) and MapReduce-on-Graph (MRoG) par-
allel graph processing models to generate the subgraphs
centered around each seed node. To illustrate the process of
generating subgraphs, we consider the case of k-hop neigh-
bor sampling. Our input comprises a graph 𝐺 and a set of
seed nodes 𝑆 . (1) First, we designate each node 𝑣 in 𝐺 as
grey if 𝑣 belongs to 𝑆 . (2) Second, we execute the exchange
operation for each grey node 𝑢. Within this step, we gather
and mark the neighbors 𝑁 (𝑢) of 𝑢 with the index of 𝑢. Ad-
ditionally, we apply and store the neighbor indices within
𝑢. (3) Third, we examine each edge in the graph. If both the
source and target nodes possess the same seed node index
mark, it signifies that the edge originates from a seed node.
Consequently, with MRoG, we map each edge and reduce
them such that the seed node serves as the destination for
collecting the edges belonging to the same subgraph. (4) Fi-
nally, for every node𝑤 in𝐺 , if𝑤 is marked as a neighbor of
any seed node, we designate𝑤 as grey and proceed back to
the second step, facilitating the exploration of the next level
of the subgraph.
The subgraph information is stored utilizing a key-value

storage system. Each seed node serves as a unique key, while
the corresponding subgraph is stored as the associated value.
Simultaneously, we separate the feature information of nodes
and edges from the subgraph’s topology. This segregation
reduces the burden of data storage and parsing, thereby
optimizing the overall system.

1


