
Syscall-based Isolation for Monolithic OS Kernels
Yousuke Tanimoto

TUAT
Tokyo, Japan

tanimoto@asg.cs.tuat.ac.jp

Hiroshi Yamada
TUAT

Tokyo, Japan
hiroshiy@cc.tuat.ac.jp

Memory isolation is key to mitigating undefined behaviors of
commodity operating systems (OSes). Since these kernels are
typically monolithic, their functionalities run in the same ad-
dress space. Errors propagating from the buggy components
or hijacked kernel contexts can damage all kernel memory
objects. The isolation mechanism builds multiple protection
domains, traps any access from one to the others’ objects,
and forces the faulted OS kernel to fail-stop. Appropriate
isolation in the kernels prevents failed components from
accessing healthy objects and minimizes their effect as much
as possible. Modern CPUs offer hardware support to enforce
memory isolation, such as Intel Memory Protection Keys for
Supervisor Pages (PKS) and ARM Memory Domains.

Although the existing isolation techniques, which are typ-
ically component-based, effectively force OS kernels to per-
form a fail-stop on illegal accesses to protected objects, intra-
component errors, caused by some complicated bugs, can
evade a component-based isolation and trigger undefined
behaviors in the affected OS kernels as they propagate. An
intra-component error is an error that illegally updates mem-
ory objects inside an OS component so that the component-
based isolation cannot prevent it from propagating. For ex-
ample, the CVE-2022-0817 [1] vulnerability, known as Dirty
Pipe, allows attackers to write to a read-only pipe buffer
into the file via splice() by exploiting a merge check miss,
which means that the error propagation is confined inside
only the file system and the attack is done completely. Also,
existing component-specific approaches cannot be applied
to the entire body of OS kernels; errors can propagate over
the kernel entities outside the protected component.
This paper presents Iv6, an OS kernel whose internals

are isolated to mitigate intra-component error propagation.
To enhance the memory isolations, Iv6 offers a system call
(syscall)-based isolation where the kernel process context
can access only kernel objects necessary for the issued syscall
execution; it assigns different access permissions to different
kernel contexts. The kernel context in a syscall accesses
only the kernel objects necessary for its execution, and Iv6
forbids it from reading and writing the other objects, even
those in the same component.When a process reads or writes
objects unrelated to the current syscall context, Iv6 detects
the illegal accesses and forces the running OS kernel to fail-
stop. For example, open() can update proc, which is a process
control block in xv6, to connect it to a new file descriptor
but write() cannot modify it. In another example, write()
can access pipe but open cannot do so. Iv6 makes use of

CPU-supported protection keys; our prototype uses Intel
PKS to assign different access permissions to kernel objects
to syscalls in a lightweight manner.

Iv6 introduces memory domains, each of which has access
permission for memory objects based on Intel PSK and is
associated with one syscall. A kernel context is executed
with one memory domain, and the accesses to kernel objects
in the context follow its permission. When a process issue
open(), Iv6 sets open()’s memory domain and executes its ker-
nel context. It releases the access control before returning to
the user space. Iv6 conceptually generates the same number
of memory domains as the syscalls. In addition, it prepares
several memory domains for interrupt handlers to mitigate
their failures. The management is performed by two subsys-
tems: the domain allocator and domain switcher. The domain
allocator allocates memory domains to all the syscalls in an
on-demand manner, while the domain switcher safely sets
a memory domain based on the issued syscall. When a pro-
cess issues a syscall and the domain switcher does not find
the corresponding memory domain, it requests the domain
allocator to create a new memory domain and the domain
switcher associates the domain to the issued syscall. The
domain allocator also provides more memory domains than
the number of physical PKEYs by extending VDom [2]. The
domain switcher switches memory domains so safely that
damaged or hijacked kernel contexts cannot change their
memory domains arbitrarily and update their access rights.
We prototyped Iv6 into an x86-64-based xv6 integrated

with a lwIP-based network stack. Our prototype, yet to be
well-optimized, controls 37 syscalls (21 original xv6 syscalls
and 16 socket syscalls). We conducted experiments using
it, and the experimental results show that Iv6 successfully
isolates kernel contexts on a syscall basis with up to 1.22×
runtime overhead. We are now optimizing the prototype,
measure its memory space ooverhead, and conducting ex-
periments with more complex workloads like web servers.

References
[1] CVE Program. CVE-2022-0817, Accessed: 2023-12-20. https://www.cve.

org/CVERecord?id=CVE-2022-0817.
[2] Ziqi Yuan, Siyu Hong, Rui Chang, Yajin Zhou,Wenbo Shen, and Kui Ren.

Vdom: Fast and unlimited virtual domains on multiple architectures. In
Proc. of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’23), pages
905–919, 2023.

1

https://www.cve.org/CVERecord?id=CVE-2022-0817
https://www.cve.org/CVERecord?id=CVE-2022-0817

	References

