
Practicing the benefits of co-execution in HPC
Nikolaos Triantafyllis

ntriantafyl@cslab.ece.ntua.gr
National Technical University of Athens

Efstratios Karapanagiotis
skarapan@cslab.ece.ntua.gr

National Technical University of Athens

Alexios Papavasileiou
apapavas@cslab.ece.ntua.gr

National Technical University of Athens

Georgios Goumas
goumas@cslab.ece.ntua.gr

National Technical University of Athens

Nectarios Koziris
nkoziris@cslab.ece.ntua.gr

National Technical University of Athens

1 Introduction
In MPI applications, processes are spawned to execute com-
monly identical code on distinct data, resulting in a homoge-
nized behavior that often imposes similar demands on the
system. In typical HPC infrastructures, dedicated node allo-
cation is a standard strategy, therefore, MPI applications are
more likely to obstruct each other’s progress as they contend
for shared resources, such as LLCs, andmemory and network
bandwidth. On the other hand, node sharing revolves around
the idea that applications can coexist when they do not con-
currently exert pressure on the same resources, which could
lead to improved performance [2]. According to our work,
this approach seems to have a notable impact on system
utilization, especially as compute nodes continue to scale up,
ultimately resulting in cost and energy savings.

2 Co-executing in operational HPC
facilities

We conducted co-execution experiments of various applica-
tion kernels of the NPB and the SPEChpc 2021 benchmarks in
the GRNET/ARIS and the CINECA/Marconi supercomputers.
Applications ran repeatedly in compact mode and in pairs,
obtaining full and half CPU socket capacity each, respec-
tively. Speedup for each application is calculated as the ratio
of the median execution time of the compact runtime to the
median execution time of the co-executed scenario runtime.
The practical observation is that co-execution contributes
to an over 13% increased average speedup. Additionally, co-
executed pairs should be chosen wisely, because improper se-
lection can lead to unilateral or bilateral performance degra-
dation, which is a known fact [1]. Our experiments involve
applications under diverse computational kernels, different
problem sizes, and various numbers of spawn MPI processes,
strengthening the requirement for a co-execution policy.

3 Simulating an HPC Scheduler
Due to the inherent challenges of conducting real-world ex-
periments, simulations are required to study the complex
problem of co-scheduling. Leveraging collected data, our
simulation framework seeks to determine the viability of a
co-scheduling method and assess its possible performance
benefits. It utilizes the measurements from our experiments

to construct virtual workloads and try various job sched-
uling approaches with the use of heuristic functions for
sub-optimal decision-making. It is worth noting that the
software provides a Gantt representation of the workload
runtime, including a Boxplot analysis of the related applica-
tions’ speedups.

4 Integrating co-execution mechanisms in
a real-world resource manager

OAR3 is a flexible resource and job manager targeted for
HPC clusters. Within it, we developed new resource allo-
cation policies oriented toward co-execution, whereas the
new enhanced code was deployed on an HPC cluster. Since
job pairs need to be selected appropriately, we designed a
job’s life cycle prototype within OAR3 where a job can be
assigned to a resource allocation policy based on its perfor-
mance and MPI counters by ML-driven decisions. The ML
model was built on a small dataset of performance and MPI
counters harvested from runs of the previously mentioned
benchmarks in compact mode.

5 Future Work
As for our next step, we are considering, running experi-
ments in more HPC facilities with more MPI benchmarks.
Concerning the simulation, we are examining supporting
dynamic waiting queues, code optimizations, and implement-
ing more targeted co-scheduling approaches. Regarding the
OAR3 integration, the development of job queue and system-
aware resource allocation policies are to be investigated.

6 Acknowledgement
Thisworkwas co-funded by the EuropeanHigh-Performance
Computing Joint Undertaking and the General Secretariat
of Research and Innovation, Ministry of Development &
Investments under the project REGALE (G.A. No 956560).

References
[1] Andreas de Blanche and Thomas Lundqvist. 2016. Terrible twins: A

simple scheme to avoid bad co-schedules. In Proceedings of the 1st
COSH Workshop on Co-Scheduling of HPC Applications. 25.

[2] Alex D Breslow, Leo Porter, Ananta Tiwari, Michael Laurenzano, Laura
Carrington, Dean M Tullsen, and Allan E Snavely. 2016. The case for
colocation of high performance computing workloads. Concurrency
and Computation: Practice and Experience 28, 2 (2016), 232–251.


	1 Introduction
	2 Co-executing in operational HPC facilities
	3 Simulating an HPC Scheduler
	4 Integrating co-execution mechanisms in a real-world resource manager
	5 Future Work
	6 Acknowledgement
	References

