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Numerous graph neural network (GNN) models, e.g.,
GCN [1], GAT [2], GIN [3], and others [4]–[6] have been
proposed, leading to several GNN system-level optimizations
[7]–[15], reportedly led up to 15× speedup in training runtime
in single-GPU over a baseline DGL system. However, our
analysis points out that many prior optimizations lack a
comprehensive understanding of the unique requirement for
GNN computations, which leads to pitfalls in system design
and evaluation. In this work, we focus on single-GPU GNN
systems, and analyze over 20 systems [7]–[22], [22]–[26] from
the top systems and HPC conferences.

A. Training Accuracy Related Pitfalls

EVAL-P1: Absence of Training Accuracy Measurement
Several GNN training systems [7]–[11], [13]–[15], [18]–[20],
[23], [27]–[29] have established a trend of not reporting
training accuracy. Fig. 1 (a) shows that GNNAdvisor, Seastar,
and TC-GNN demonstrate abnormal accuracy. FuseGNN [12]
on GAT (not shown in Fig.) could achieve only 58% accuracy,
way below DGL’s 92.4% on the Reddit dataset. Further, a
few other systems [8], [10] do not even have a backward
computation, hence we cannot measure their training accuracy.
Inspired by these results, further analysis shows that many
GNN systems have the following system design pitfalls.
SYS-P1: Omitted State Tensor Many GNN systems [8],
[10] fused their kernel into a giant kernel, utilizing their
fused forward computation as a substitute for GNN train-
ing performance evaluation without implementing backward
computation. However, these approaches often overlook the
state tensors– intermediate activation results that require ma-
terialization (in GPU memory) for backward computation.
Consequently, their emulated forward computation potentially
fuse kernels by using shared memory or device registers for
state tensor rather than global memory to gain a performance
advantage, which is not practical in end-to-end training setup.
SYS-P2: Missing/Inefficient Sparse Matrix Transpose For-
ward SpMM (Y ← AX) is fundamentally different than
SpMMT called in backward(δX ← AT δY ) because transpose
need of A– the adjacency matrix (graph) that includes the
static part(graph topology) and the dynamic part(the edge-

level state tensor or weights). While, one can pre-process the
graph to keep the transpose of the topology, the edge-level
tensor requires transpose at run-time. Our measurement shows
that CuSparse API performs transpose is even costlier than its
SpMM runtime. DGL first transposes edge-level tensor using
edge ID abstraction, which we call eShuffle in the poster, and
then uses SpMM to implement SpMMT . Hence, substituting
forward SpMM in place of backward SpMM [14] is likely to
show performance gain against DGL, which itself picked an
inferior SpMMT design despite Cusparse offering it natively.
SYS-P3: Incorrect Order of Backward Operations A few
GCN systems [7], [11] that attempt kernel fusion of SpMM
with divide by degree kernel order their backward operation in-
correctly, as the latter kernel should be called first in backward.
However, they substitute forward fused version in backward
leading to inaccurate accuracy, and some performance gain.

B. Training Runtime Related Pitfalls

EVAL-P2: Unawareness of Framework Overhead Several
single-GPU GNN systems [7], [9], [14], [25], [28] relied
exclusively on smaller datasets, while others [11]–[13] relied
additionally on one mid-size dataset to show performance
speedup over DGL. However, that results were inconclusive
due to DGL being shown as out-of-memory (OOM) or the host
system being shown as slower. Our measurements for smaller
datasets show that training time is dominated by framework
overhead instead of kernel runtime. So, the training speedup
stated in such cases is due to the lower framework overhead
(unknowingly) instead of better kernel runtime (claimed).
Fig. 1(b) and (c) confirm this empirically.

Our kernel runtime evaluation on mid-size datasets (see
poster) confirms that pitfalls have impacted research: a) many
current GNN systems’ SpMM⊤(used in GAT) runtime is sig-
nificantly slower than Cusparse; b) GNNAdvisor and TC-GNN
were significantly slower than Cusparse for GCN SpMM.
Conclusion and Future Work In conclusion, new measure-
ments presented in this paper question our understanding of
single-GPU GNN system design and evaluation and motivate
the need for more in-depth studies. Finally, we seek a bench-
marking tool to truly compare the performance of prior works.
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Fig. 1: Our evaluation results show pitfalls in GNN system. GNNA = GNNAdvisor. G0, G1, G2, G9, and G10 represent Cora, Citeseer,
Pubmed, OGB product, and Reddit datasets respectively with vertex-count (edge-count) of 2,708(10,858), 3,327(9,104), 19,717(88,648),
2,449,029(123,718,280), 232,965(229,231,784) respectively
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