
Single-GPU GNN Systems: Pitfalls and Future Directions
Yidong Gong and Pradeep Kumar, William & Mary

Numerous graph neural network (GNN) models, e.g.,
GCN [1], GAT [2], GIN [3], and others [4]–[6] have been
proposed, leading to several GNN system-level optimizations
[7]–[15], reportedly led up to 15× speedup in training runtime
in single-GPU over a baseline DGL system. However, our
analysis points out that many prior optimizations lack a
comprehensive understanding of the unique requirement for
GNN computations, which leads to pitfalls in system design
and evaluation. In this work, we focus on single-GPU GNN
systems, and analyze over 20 systems [7]–[22], [22]–[26] from
the top systems and HPC conferences.

A. Training Accuracy Related Pitfalls

EVAL-P1: Absence of Training Accuracy Measurement
Several GNN training systems [7]–[11], [13]–[15], [18]–[20],
[23], [27]–[29] have established a trend of not reporting
training accuracy. Fig. 1 (a) shows that GNNAdvisor, Seastar,
and TC-GNN demonstrate abnormal accuracy. FuseGNN [12]
on GAT (not shown in Fig.) could achieve only 58% accuracy,
way below DGL’s 92.4% on the Reddit dataset. Further, a
few other systems [8], [10] do not even have a backward
computation, hence we cannot measure their training accuracy.
Inspired by these results, further analysis shows that many
GNN systems have the following system design pitfalls.
SYS-P1: Omitted State Tensor Many GNN systems [8],
[10] fused their kernel into a giant kernel, utilizing their
fused forward computation as a substitute for GNN train-
ing performance evaluation without implementing backward
computation. However, these approaches often overlook the
state tensors– intermediate activation results that require ma-
terialization (in GPU memory) for backward computation.
Consequently, their emulated forward computation potentially
fuse kernels by using shared memory or device registers for
state tensor rather than global memory to gain a performance
advantage, which is not practical in end-to-end training setup.
SYS-P2: Missing/Inefficient Sparse Matrix Transpose For-
ward SpMM (Y ← AX) is fundamentally different than
SpMMT called in backward(δX ← AT δY) because transpose
need of A– the adjacency matrix (graph) that includes the
static part(graph topology) and the dynamic part(the edge-

level state tensor or weights). While, one can pre-process the
graph to keep the transpose of the topology, the edge-level
tensor requires transpose at run-time. Our measurement shows
that CuSparse API performs transpose is even costlier than its
SpMM runtime. DGL first transposes edge-level tensor using
edge ID abstraction, which we call eShuffle in the poster, and
then uses SpMM to implement SpMMT . Hence, substituting
forward SpMM in place of backward SpMM [14] is likely to
show performance gain against DGL, which itself picked an
inferior SpMMT design despite Cusparse offering it natively.
SYS-P3: Incorrect Order of Backward Operations A few
GCN systems [7], [11] that attempt kernel fusion of SpMM
with divide by degree kernel order their backward operation in-
correctly, as the latter kernel should be called first in backward.
However, they substitute forward fused version in backward
leading to inaccurate accuracy, and some performance gain.

B. Training Runtime Related Pitfalls

EVAL-P2: Unawareness of Framework Overhead Several
single-GPU GNN systems [7], [9], [14], [25], [28] relied
exclusively on smaller datasets, while others [11]–[13] relied
additionally on one mid-size dataset to show performance
speedup over DGL. However, that results were inconclusive
due to DGL being shown as out-of-memory (OOM) or the host
system being shown as slower. Our measurements for smaller
datasets show that training time is dominated by framework
overhead instead of kernel runtime. So, the training speedup
stated in such cases is due to the lower framework overhead
(unknowingly) instead of better kernel runtime (claimed).
Fig. 1(b) and (c) confirm this empirically.

Our kernel runtime evaluation on mid-size datasets (see
poster) confirms that pitfalls have impacted research: a) many
current GNN systems’ SpMM⊤(used in GAT) runtime is sig-
nificantly slower than Cusparse; b) GNNAdvisor and TC-GNN
were significantly slower than Cusparse for GCN SpMM.
Conclusion and Future Work In conclusion, new measure-
ments presented in this paper question our understanding of
single-GPU GNN system design and evaluation and motivate
the need for more in-depth studies. Finally, we seek a bench-
marking tool to truly compare the performance of prior works.

0
25
50
75
100

1Mi 2Mi 4Mi 8Mi 16Mi 32MiO
ve

rh
ea

d(
%

)

Edge count (in Millions)

(a) Training Accuracy Comparison: DGL is the reference system
(b) DGL Overhead for different |E|
(|V|= 32,768 (c) Training Time and Framework Overhead

0

25

50

75

100

G0 G1 G2 G9 G10
GCN

DGL Seastar GNNA TC-GNN

0
25
50
75

100

G0 G1 G2 G9 G10

Ac
cu

ra
cy

(%
)

GAT

DGL Seastar TC-GNN

Er
ro
r

Er
ro
r 0

1
2
3
4

D
G
L

Py
G

G
N
N
A

D
G
L

Py
G

G
N
N
A

D
G
L

Py
G

G
N
N
A

D
G
L

Py
G

dg
N
N

D
G
L

Py
G

dg
N
N

D
G
L

Py
G

dg
N
N

G0 G1 G2 G0 G1 G2

GCN GAT

Training Time Overhead Time

Ti
m

e
(in

 S
ec

on
d)

Fig. 1: Our evaluation results show pitfalls in GNN system. GNNA = GNNAdvisor. G0, G1, G2, G9, and G10 represent Cora, Citeseer,
Pubmed, OGB product, and Reddit datasets respectively with vertex-count (edge-count) of 2,708(10,858), 3,327(9,104), 19,717(88,648),
2,449,029(123,718,280), 232,965(229,231,784) respectively

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations (ICLR-17), 2017.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 6th International Conference
on Learning Representations (ICLR-18), 2018.

[3] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” 7th International Conference on Learning
Representations (ICLR-19), 2019.

[4] X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv
preprint arXiv:1711.07553, 2017.

[5] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Yeung, “Gaan: Gated
attention networks for learning on large and spatiotemporal graphs,” in
Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial
Intelligence, 2018, pp. 339–349.

[6] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[7] Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and Y. Ding, “Gnnad-
visor: An adaptive and efficient runtime system for gnn acceleration on
gpus,” in 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), 2021, pp. 515–531.

[8] K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding
and bridging the gaps in current gnn performance optimizations,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 119–132.

[9] G. Huang, G. Dai, Y. Wang, and H. Yang, “Ge-spmm: General-purpose
sparse matrix-matrix multiplication on gpus for graph neural networks,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–12.

[10] Q. Fu, Y. Ji, and H. H. Huang, “Tlpgnn: A lightweight two-level
parallelism paradigm for graph neural network computation on gpu,” in
Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, 2022, pp. 122–134.

[11] Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, and
F. Yu, “Seastar: Vertex-centric programming for graph neural networks,”
in Proceedings of the Sixteenth European Conference on Computer
Systems, 2021, pp. 359–375.

[12] Z. Chen, M. Yan, M. Zhu, L. Deng, G. Li, S. Li, and Y. Xie, “fusegnn:
Accelerating graph convolutional neural network training on gpgpu,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[13] H. Zhang, Z. Yu, G. Dai, G. Huang, Y. Ding, Y. Xie, and Y. Wang,
“Understanding gnn computational graph: A coordinated computation,
io, and memory perspective,” Proceedings of Machine Learning and
Systems, vol. 4, pp. 467–484, 2022.

[14] Y. Wang, B. Feng, Z. Wang, G. Huang, and Y. Ding, “{TC-GNN}:
Bridging sparse {GNN} computation and dense tensor cores on
{GPUs},” in 2023 USENIX Annual Technical Conference (USENIX ATC
23), 2023, pp. 149–164.

[15] Z. Ye, R. Lai, J. Shao, T. Chen, and L. Ceze, “Sparsetir: Composable
abstractions for sparse compilation in deep learning,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, 2023, pp.
660–678.

[16] Y. Hu, Z. Ye, M. Wang, J. Yu, D. Zheng, M. Li, Z. Zhang, Z. Zhang, and
Y. Wang, “Featgraph: A flexible and efficient backend for graph neural
network systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2020,
pp. 1–13.

[17] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: Towards efficient and scalable deep learning on graphs,”
in ICLR 2019 Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[18] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, “Accelerating graph
sampling for graph machine learning using gpus,” in Proceedings of the
Sixteenth European Conference on Computer Systems, 2021.

[19] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu, and X. Li, “Engn:
A high-throughput and energy-efficient accelerator for large graph neural
networks,” vol. 70, no. 9, pp. 1511–1525, 2020.

[20] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 15–29.

[21] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” in ICLR 2019 Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[22] C. Tian, L. Ma, Z. Yang, and Y. Dai, “Pcgcn: Partition-centric processing
for accelerating graph convolutional network,” in 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2020, pp. 936–945.

[23] I. Kim, J. Jeong, Y. Oh, M. K. Yoon, and G. Koo, “Analyzing gcn
aggregation on gpu,” IEEE Access, vol. 10, pp. 113 046–113 060, 2022.

[24] M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Char-
acterizing and understanding gcns on gpu,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 22–25, 2020.

[25] T. Baruah, K. Shivdikar, S. Dong, Y. Sun, S. A. Mojumder, K. Jung, J. L.
Abellán, Y. Ukidave, A. Joshi, J. Kim et al., “Gnnmark: A benchmark
suite to characterize graph neural network training on gpus,” in 2021
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2021, pp. 13–23.

[26] R. Waleffe, J. Mohoney, T. Rekatsinas, and S. Venkataraman, “Marius-
gnn: Resource-efficient out-of-core training of graph neural networks,”
in Eighteenth European Conference on Computer Systems (EuroSys’ 23),
2023.

[27] L. Wang, Q. Yin, C. Tian, J. Yang, R. Chen, W. Yu, Z. Yao, and
J. Zhou, “Flexgraph: A flexible and efficient distributed framework for
gnn training,” in Proceedings of the Sixteenth European Conference on
Computer Systems, 2021, pp. 67–82.

[28] J. Hu, S. Qian, Q. Fang, Y. Wang, Q. Zhao, H. Zhang, and C. Xu,
“Efficient graph deep learning in tensorflow with tf geometric,” in
Proceedings of the 29th ACM International Conference on Multimedia,
2021, pp. 3775–3778.

[29] B. Zhang, R. Kannan, and V. Prasanna, “Boostgcn: A framework
for optimizing gcn inference on fpga,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2021, pp. 29–39.

