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Today’s cloud services rely on high-performance distributed
datastores for storing and accessing their data. These ser-
vices are often characterized by read-dominant accesses and
numerous concurrent requests [1, 5]. Thus, datastores must
provide high throughput to meet the performance demands
of online services while offering high availability, despite
being deployed on failure-prone commodity hardware [6].
Data replication is a fundamental feature of high per-

formance and resilient datastores. Data must be replicated
across multiple servers to increase throughput because a
single server often cannot keep up with the request load [4].
Replication is also necessary to guarantee that a crash of a
server does not render the dataset inaccessible.
Motivation. Keeping the replicas consistent, to ensure that
the services running on the datastore operate correctly, is
a challenge, especially in the presence of crashes. A crash-
tolerant replication protocol is responsible for keeping the
replicas of a datastore consistent – evenwhen crashes occur –
by determining the necessary actions to execute reads and
writes. Several crash-tolerant protocols favor performance by
relaxing consistency (RC protocols). As such, their reads may
return stale values leading to nasty surprises for both clients
and developers [15, 17]. There exist however, protocols that
offer strongly consistent (i.e., linearizable) reads, which are
more desirable for correctness and programmability.

Crash-tolerant protocols can be synchronous or asynchro-
nous based on the model they rely on to ensure consistency.
Synchronous protocols, which depend on known bounded
processing and communication delays, are easier to design.
However, in the real world, distributed datastores are de-
ployed over complex software stacks and virtualization lay-
ers [2, 14]. Consequently, the network and compute nodes
of a distributed datastore experience asynchrony and other
timing anomalies, which may lead to timing violations and
compromise the safety of synchronous protocols. To tolerate
such timing violations, safer protocols adopt the asynchro-
nousmodel where there are no timing assumptions, implying
that processing and communication delays can be arbitrary.
Existing crash-tolerant replication protocols that afford

linearizable reads fall into two categories; local reads under
synchrony (LS protocols), and remote reads under asynchrony
(RA protocols). LS protocols offer cheap linearizable reads that
are served locally on a single replica, without inter-replica
communication, as in Hermes [12]. However, these proto-
cols assume a synchronous model [7] (e.g., to exploit leases).
In contrast, RA protocols, such as Raft [16] and Paxos [13],
are safe under asynchrony, but for each read, they mandate

costly inter-replica coordination and the involvement of re-
mote replicas. As Schwarzmann and Hadjistasi advocate [10],
it is important to study the feasibility of crash-tolerant proto-
cols that support linearizable local reads under asynchrony.

There exist fundamental theoretical results related to asyn-
chronous replication, including the FLP result [8] and the CAP
theorem [3, 9], but neither suffice to answer the above as
both fall short in examining the performance of reads.
Theory. To address the existing gap in understanding, this
work sheds light on a fundamental three-way tradeoff of
crash-tolerant protocols, revealing a tension between consis-
tency, performance, and the timing assumptions of a system.
Briefly, we present the L2AW theorem, an impossibility re-
sult which asserts that in any Linearizable Asynchronous
read/write register implementation that tolerates even a single
crash (Without blocking reads or writes), no reads are Local.
We observe that the performance aspect of this tradeoff

affects the latency but not necessarily the throughput of
reads. Thus, asynchronous linearizable reads need not be as
costly as in existing RA protocols, where each read incurs
network and computation costs to remote replicas.
Practice. Capitalizing on the above insight, we introduce
almost-local reads (ALRs), a scheme that affords low-cost
reads in a linearizable and crash-tolerant manner under asyn-
chrony. ALRs exploit the high volume of concurrent reads
in online services by leveraging batching, but with a twist.
Unlike traditional batching, all reads in an ALR-batch are
executed against the local replica of a server, and only a light-
weight sync operation per batch involves remote replicas.
The sync incurs only a small network and computation cost
regardless of the batch size. Moreover, the sync can some-
times be elided as existing writes can act as implicit syncs. As
a result, ALRs incur little or no extra network and processing
costs to remote replicas, thus achieving the performance of
local reads while offering linearizability under asynchrony.
When applied to the protocols in all three corners of the

design space (i.e., RA, RC, LS), ALRs add the missing piece:
1 they improve the throughput for RA protocols (e.g., Raft)
2 ensure linearizability for RC protocols (e.g., ZAB [11]) and
3 they allow LS protocols (e.g., Hermes) to operate under
asynchrony. Our experiments show that ALR-enhanced vari-
ants of ZAB and Hermes protocols on 95% reads come within
2% and 5% of their original throughput, respectively, while
also ensuring linearizability under asynchrony. Finally, ALRs
yield over 2.5× higher throughput on Raft in read-intensive
workloads without sacrificing consistency or asynchrony.
⋆This work occurred when the authors were at the University of Edinburgh.
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