Unveiling Page Bloating in SSDs:
File Blocks Stored Across Unnecessarily Many Pages

Yuhun Jun
yuhun@skku.edu
Sungkyunkwan University
Suwon, Korea

Advancements in design and manufacturing processes have
significantly enhanced the data storage capacity of flash
memory chips. To maintain efficiency as chip capacity ex-
pands, manufacturers have opted to increase the size of
individual pages [1]. This adjustment is aimed at manag-
ing the growing complexity and overhead associated with
the flash translation layer (FTL) in solid-state drives (SSDs).
Driven by the twin goals of technological progress and cost-
effectiveness, SSD page sizes have progressively grown, re-
flecting the industry’s push towards higher density and lower
costs. Presently, the standard page size in SSDs falls between
16 KB and 32 KB, whereas initially, it was only 512 Bytes [3].

While the page size of an SSD has been gradually increas-
ing, the filesystem block sizes have remained almost con-
stant over the decades. Although the default file system block
size of Linux was 4 KB two decades ago [5], it is still 4 KB.
This constancy in file system block size creates a mismatch
between SSD page sizes and filesystem block sizes. This dis-
crepancy results in a phenomenon we term as page bloating,
where consecutive filesystem blocks, despite potentially fit-
ting within a single flash memory page, end up spanning
multiple pages due to interleaved writes from different files.
This can significantly impact read performance, a concern
that has not been adequately addressed in the literature.

When reading files stored with page bloating, blocks that
could have been read on a single page in a non-bloated sce-
nario now require reading from multiple pages. Although
reading pages from different dies can occur simultaneously,
making page bloating less impactful in scenarios with inter-
mittent reads of a few filesystem blocks, continuous reading
operations or sustained high SSD workload conditions can
lead to significant throughput degradation due to amplified
read operations caused by page bloating,.

For example, the read performance of Filebench’s file-
server workload [4] conducted at a 16 KB size, slowed down
by 33%. This issue arises even when large files are pre-allocated
to ensure continuity at the file system level. Pre-allocation
of a file at the file system level is usually used to avoid frag-
mented files when the application is supposed to write a
small amount of data frequently to the file. When a file is
pre-allocated at the file system level, no pages are actually al-
located in an SSD, and the actual page allocation is conducted
when the application writes the data to the file later. Even
in this case, concurrent small writes across multiple files

Euiseong Seo
euiseong@skku.edu
Sungkyunkwan University
Suwon, Korea

can trigger page bloating. It is most commonly observed in
systems such as log servers and databases, where the nature
of the workload involves numerous small transactions.

The most straightforward solution to mitigate page bloat-
ing involves aligning file system block sizes with SSD page
sizes. However, applying this solution would result in signif-
icant space wastage due to the prevalence of small files [2]
and the non-uniformity of file sizes relative to the page size.
For example, in a Linux desktop PC installed with Ubuntu
20.04, if we increase the file system block size to 32 KB from
4 KB, 38.8% of additional storage space is necessary.

Based on these observations, we are currently conducting
research on the scheme to detect and rewrite data spread
across multiple pages due to filesystem block size and SSD
page size mismatches, effectively addressing the root cause
of page bloating without requiring modifications to existing
filesystem block sizes. Rearranging files that have been im-
pacted by page bloating into their optimal layout is a straight-
forward task, as it simply involves sequentially rewriting
the files after reading them, provided there are no concur-
rent write operations. However, identifying which filesystem
blocks are dispersed due to page bloating requires informa-
tion beyond what’s available to either the filesystem or the
SSD alone. Therefore, we are exploring methods to detect
these cases with minimal entanglement between the filesys-
tem and the FTL. This approach, still in the exploratory phase,
holds promise for eliminating performance degradation at-
tributed to page bloating.

References

[1] Yuhun Jun, Jachyung Park, Jeong-Uk Kang, and Euiseong Seo. 2022.
Analysis and mitigation of patterned read collisions in flash SSDs. IEEE
Access 10 (2022), 96997-97009.

Marshall K McKusick, William N Joy, Samuel J Leffler, and Robert S
Fabry. 1984. A fast file system for UNIX. ACM Transactions on Computer
Systems (TOCS) 2, 3 (1984), 181-197.

[3] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-
Joon Choi, Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon
Choi, Jin-Sun Yum, et al. 1995. A 3.3 V 32 Mb NAND flash memory
with incremental step pulse programming scheme. IEEE Journal of
Solid-State Circuits 30, 11 (1995), 1149-1156.

Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A
flexible framework for file system benchmarking. USENILX; login 41, 1
(2016), 6-12.

Stephen C Tweedie et al. 1998. Journaling the Linux ext2fs filesystem.
In Proceedings of the The Fourth Annual Linux Expo. Durham, North
Carolina.

[2

—

[4

flan)

[5

i



	References

